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The true motion of a particle in a one-dimensional potential well is regular. since conserba- 
tion of energy constrains the velocity D at each value of the coordinate X. Nonetheless, when 
the orbit is computed numerically. stochastic behavior can resuii. We have considered simple 
integrators as mappings from (x, ~1) at one discrete time level to (s, c) at the next. In genera:. 
when the timestep size d is small enough there are closed orbits. while for larger values there 
is chaos. Chaos can result for surprisingly small values of 3 in cases where the physical phase 
plane includes a separatrix. The behavior of the leapfrog mover as applied to motion in z 
particular double-well potential is examined in detail. Here, the onset of stochasticity occilis 
at step sizes much smaller than the stability thresho!d associated with the harmok 
dependence of the potential at large Ix/. Other one-dimensionai wells and movers are aiso 
treated; implications of the area-preservin, m and energy conserving attributes possessed by 
some movers are discussed. A new variant of the Standard Map, displayicg symmetry about 
both x = 0 and L = 0 in its phase plane, is introduced. If 1951 .Acadcmx Press. Inc 

I. INTRODUCTI~& 

A classical problem in computational dynamics concerns the motion of a particle 

in a one-dimensional potential well. Any algorithm which is expected to perform 
reliable real-world trajectory calculations must be able to compute the behavior of 
this simplest system over a large number of orbital periods while preserving both 
quantitative and qualitative accuracy. Tt is traditional to examine the iocal (single 
step) truncation properties of numerical schemes. In this paper we are concerned 
with the long-term behavior of such schemes, and its relationship to their phase 
space properties. 

We treat the one-dimensional oscillator as a model problem; however, many 
higher-dimensional systems of real interest reduce to this case. This often comes 
about because extra strict invariants (such as angular momentum) exist to con- 
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strain the motion; the system has a one-dimensional effective potential. In other 
cases, extra approximate “adiabatic” invariants (such as the magnetic moment) 
exist and can be applied. In all such systems the physical motion can be reduced 
to a quadrature, and the motion for all time obtained thereby. The motion can 
never be stochastic, because the velocity 11 at any value of the coordinate x is con- 
strained by conservation of energy to have a unique magnitude. Thus the physical 
trajectories are represented by closed curves in the phase plane, and the motion 
must be regular. 

When a numerical scheme is employed to compute the motion, the situation 
changes dramatically. Such a scheme computes the particle’s phase space location 
only at a discrete set of points along an approximation to the true orbit. It thus 
represents a mapping from (x, u) at one time level to (x, v) at the next. The numeri- 
cal calculation inevitably introduces errors. These may be regarded as spurious 
driving terms in the equation of motion, which force the solution away from its true 
trajectory. Alternatively, one may regard the numerical integrator as an oscillator 
to which the physical system is coupled; this oscillator both perturbs the physical 
system and is itself governed by the (past and present) state of that system. Charac- 
teristic frequencies of this oscillator are closely related to the inverse of the timestep 
size. The numerical error associated with taking a finite timestep corresponds to the 
difference in the trajectory arising from the coupling. While the number of degrees 
of freedom of the numerical system is (in a strict sense) unchanged from that of the 
physical system (two quantities suffice to describe its state), the numerical system 
behaues as if one were periodically taking snapshots of a modified physical system 
which had one or more extra degrees of freedom. 

In an anharmonic potential well d(x), the period of an orbit is a function of its 
energy. During a numerical calculation of the motion, the energy changes due to 
truncation and roundoff errors, and so the resonant frequency of the physical 
system has a finite width. In the phase plane, the points of the numerically com- 
puted trajectory no longer need lie on a closed curve; they can instead fill a finite 
area of the phase plane. Such motion is termed “intrinsically stochastic” or 
“chaotic.” 

We describe such nunzericall~~ induced stochasticity in the sections which follow. 
In Section II the leapfrog mover is treated; we consider its application to motion in 
a double-well potential in some detail. We then examine leapfrog motion in a 
single-well potential. The relationship between leapfrog motion in a sinusoidal 
potential and the Standard Map is noted, and a symmetrized Standard Map 
derived. In Section III we examine a time-centered implicit mover, in Section IV 
a predictor-corrector scheme, and in Section V an energy-conserving advance. 
Discussion of the implications of this work appears in Section VI. 

In a companion paper [I] we examine analytically the long-time behavior of 
area-preserving integrators when small timesteps are employed and demonstrate the 
existence of a conserved quantity along the numerically computed orbit; this 
accounts for the observed existence of extremely line KAM curves in “almost all” 
numerical trajectories when the timestep is sufficiently small. 
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II. LEAPFROG MOVER 

With timestep size A and CJS’ EE &j/ax, the leapfrog mover is: 

Superscripts represent time levels; we linearly interpolate u to time levei n csicg 
$1 = r ,,,I ~ 1.2 

AL 
+ $?+ I:2 ). then plot the pair (Y, r”i. Equivalently, we can write a 

variant with x, c defined at integer time levels: 

We can write the leapfrog mover in a third form most suitabte for analysis: 

I ‘It1 =.y”+A&@!;2 q$‘(.y”); 

fC1=p”-A/2 [&(.y’z)+$‘(;<‘~+l)j. 
(3) 

These variants are called “isochronous leapfrog” in our companion paper [ 13, 
Defining FE -d’, and noting 

dF(x” + ‘) = SF(.u” + ‘) dx” + ’ 
2x” sit’ + 1 dx” 

=F’(x’2+L)[1 +d2/2 F’(P)] 

and 

dF(P+ ’ ) aF(x’z + l) ix’* + l 

atln = (y+l &” 

we find the Jacobian of the transformation (Y, c”]+ (x” + ‘, P+ ‘) to be unity; 
identically, 

Thus the leapfrog integrator is an area-preserving map, 
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In a harmonic well with natural frequency mO, the classical leapfrog “dispersion 
relation” for the frequency w observed in a numerical calculation [Z] is: 
sin oA/2 = +w,A/2, with stability limit d, = 2/o, = (period)/rc. For timesteps 
d > d, there is odd-even numerical instability (overstability), with real frequency 
w, = r/A. For small enough timestep there is neither energy loss nor gain 
(averaging over an orbit ). Expanding the dispersion relation for small timestep, one 
finds that w = o,[ 1 + (o,d)‘/24 + . . .I. The cumulative phase after N steps is Nod, 
and so the cumulative phase error is N(~,d)~/24. If it is necessary to make (say) 
less than a one-radian error, one sets this expression equal to one and solves for N. 
For w,d = 0.1, the calculation can be carried out for 24,000 steps, or about 
382 cycles. For o,d = 0.3, the calculation can be carried out for 890 steps, or about 
42 cycles. 

In an anharmonic well there is the opportunity for net energy loss and gain. We 
proceed to explore behavior in such anharmonic wells, concentrating for the 
remainder of this section on the leapfrog mover. 

A. Double-well Potential 

We first noted the phenomenon of numerically induced stochasticity in the poten- 
tial: 

!LY 
d(x) = x3 + o.2 j + x2’ (7) 

This family of wells is depicted in Fig. 1; only the region near the bottom of the well 
is shown. For CI >0.0625, this well has a central “bump” but is harmonic with 
natural frequency o0 = ~~ at large x. We have concentrated on the case a = 1. This 
potential is depicted in Fig. 2, with the limits of the plot chosen to encompass the 
region over which orbits were computed numerically; on this scale the central 

FIG. 1. The potential cj vs x for: G( = 1 (solid). 0.0625 (dotted), 0 (dashed) 
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FIG. 2. The double-well potential qS(.u) obtained when x = I. 

“bump” is seen to be quite small. We begin with a description of the behavior in 
this double-weil potential. 

The physical phase plane (Fig. 3) consists of closed curves; there is cne 
separatrix. Particles can be trapped in one sub-well, trapped in the other, or able 
to pass over the central bump. The separatrix orbit itself (a figure eight on its side) 
is not plotted. The minimum period of 2.56 occurs for a particle at the bottom of 
one of the sub-wells. As the energy is increased, the period rises until on rhe 
separatrix it is infinite; it then falls toward an asymptotic value of 2n/,/‘5 2 4.44 as 
the energy approaches infinity. 

In all calculations described herein, a Cray 1 computer was used. The floating 
point representation uses a 48-bit mantissa; that is, 2” + 1 differs from 2<‘. but Z@ 
is unchanged when unity is added. The “unit roundoff“ (smallest number that can 

FIG. 3. The (s, I>) trajectories of a set of physically-correct orbits in the potenriai of Fig. 2. 
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be added to unity and yield a new number) is about 7.1 x lo- 15, so that the 
machine preserves somewhat over 14 digits of accuracy. Similar calculations were 
carried out using a variety of computing environments on IBM PC and Apple 
Macintosh computers, with results qualitatively similar except for the details of the 
individual orbits; however, see the discussion of single versus double precision 
below. In the actual calculations, the “isochronous” form of the leapfrog advance 
(Eq. (2)) was employed; the other forms yield trajectories which differ from the ones 
computed herein because of roundoff differences. In fact, it can be quite difficult or 
impossible ro reproduce an old result at a later date; differences in the roundoff due 
to (e.g.) a new version of the compiler lead to different orbits. 

For a small enough A, stochastic behavior is limited to orbits near the separatrix 
which are (analytically) barely trapped in one sub-well, or are barely untrapped. 
The situation for A = 0.125 is shown in Fig. 4. In Fig. 4a, seven orbits which lie near 
the separatrix are shown (they appear to overlay each other). Most of the numeri- 
cal phase plane consists of smooth closed curves (not shown) which approximate 
the true analytical curves of constant energy; there is clearly no global stochasticity. 
In Fig. 4b, the region in the vicinity of the origin is shown enlarged. Seven orbits, 
with initial conditions t’ = 0, x = 1.9382, 1.9384, . . . . 1.9394, were followed for 200,000 
steps and plotted. A stochastic sea is evident in the figure, but only in the 
immediate vicinity of the separatrix. 

At somewhat larger A, a wider band of stochasticity surrounds the separatrix. 
There are, in addition, large trajectory errors (without stochasticity) for a range of 
orbits which do not carefully sample the central bump. The energy can build as a 
particle strikes the “downhill” side of the potential repeatedly and receives a push 
each time. The energy then falls as the particle repeatedly strikes the uphill side. The 

FIG. 4. The (x, c) trajectories of a set of numerically computed orbits in the potential of Fig. 2; 
4 = 0.125. Stochasticity is limited to a narrow band. In (a) the entire upper-right quadrant of the phase 
plane is shown; in (b) a small region near the origin is shown enlarged. 
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X 

FIG. 5. The (s, E) trajectories of a set of numericaliy coaputed orbits in the potential of Fig 2. 
d = 0.1. Islands are surrounded by KAM curves. There are iarge errors at some energies 

situation for A = 0.20 is depicted in Fig. 5. Ten orbits of 100.000 steps are piotted 
in the figure, with initial conditions C= 0, .x = 2, 2.4, 2.6, 2.675, 2.8, 2.9, 3.5, 7, 
12, 117. 

For still larger A, a wide range of initial conditions yield a rich stochastic 
behavior, with a complicated island structure. The situation for d = 0.25 is de 
in Fig. 6a. The initial conditions were: rl=O, s= I, 1.4, 1.8, 2.4, 2.5, 2.75. 2.8, 1.4, 
4, 7; the third of these was run 200,000 steps, the rest 100,000. For small encugh 
energy rhe motion is confined to a single sub-well and is regular; for interYnecliate 

CC+. 6. The (s, P) trajectories of a set of 10 numerically computed orbits ia the potential of Fig. 2: 
3 =0X A wide range of behaviors is evident. In (a) the entire phase plane is showc: in ! b) z sma!l 
region (using similar but not identical orbits) is sho\\n expanded. 
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values there is stochasticity; for large values there are large trajectory errors without 
stochasticity; and for very large energy the central bump is negligible and the 
motion harmonic (with frequency independent of amplitude). There are multiple 
disjoint stochastic seas. They are separated from each other by smooth KAM 
curves, and so particles are not free to diffuse arbitrarily in energy. Figure 6b is an 
expanded view of part of the same phase plane, using initial x values 1.7, 2.4, 2.5, 
2.75, 2.8, 2.9; the first of these was run 100,000 steps, the rest 300,000. These effects 
occur at timesteps well less than the classical leapfrog stability threshold for the 
harmonic part of the potential, A = $. 

Even though the island and lobe structure in the phase plane exhibits left-right 
symmetry, the individual orbits need not. For example, every second island in a 
chain may be visited. In such cases, a mirror-image orbit always exists. If 
sub-regions of the stochastic sea are examined in greater magnification, structure on 
all scales is evident, with higher order islands becoming visible. 

Over a large part of phase space (including the region corresponding to “large 
trajectory errors”) we often observe a phase-locking phenomenon; the number of 
radial oscillations in the locus of points corresponding to an orbit is the nearest 
integer to the number of steps needed to complete one orbit in the harmonic part 
of the well. In the run depicted in Fig. 6, the harmonic-well period (about 4.44) is 
17.77 times the timestep (0.25), and we observe 18 major excursions. When A is 0.2, 
the harmonic period is 22.2 steps, and we observe 22 major excursions. However, 
while oscillations are still evident at d = 0.3, their number is 44? while the harmonic 
period is 14.8 steps, or one-third as long. 

Effects of “cantori” [3] are evident in our runs; an orbit often remains trapped 
in one sub-region of a large chaotic “sea” for a long time before it breaks through 
to another part of the sea. Runs using single and double precision (Cray-1) 
arithmetic have been compared; the varying machine roundoff makes the number 
of steps required to enter the various sub-regions of a large sea differ, confirming 
that the gaps in the cantori are indeed “found” by the orbit in a random manner. 
In addition, the island structure is somewhat different, since smaller islands can be 
resolved in double precision. 

B. Single-well Potential 

We have examined other wells and find that stochasticity is not limited to double 
wells. For example, the single-well potential a = 0.0625 has a very flat minimum, 
varying as $ + 4x” for small x; d’, d”, and #’ are all zero at x = 0. This potential 
admits chaotic leapfrog orbits. We have examined the case A = 0.75. The phase 
plane of 300,000 steps of this orbit, with initial condition .Y = 0, u = 0.935, is shown 
in Fig. 7a. An expanded view, plotting those of 3,000,OOO points that fell in the 
window, appears in Fig. 7b. Limited stochasticity is evident in the neighborhood of 
this separatrix. Chaotic motion is more pervasive in double wells; it sets in at 
infinitesimal A because the phase plane includes a separatrix even in the absence of 
finite-timestep perturbations. 
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FIG. I. The (9, t’) trajectories of a set of 10 numerically computed orbits ix rhe singie-wei porcr,:iai 
2 = 0.0625. In (a) the entire phase plane is shown; in (5) a small region (using similar but net ideniicai; 
orbits) is shown expanded. 

The leapfrog motion in the potential well $(x I = A cos .Y is equivaler:t [Gj YQ 
Ghirikov’s “Standard Map.” The Standard Map is: 

8 rr+i=,,,+,,+l; 

1”) 

p” + ’ = P’ + M sin 0”. 

In the leapfrog scheme as usually written, we redefine 4~“~ ‘;I = b-‘+ I; then 
L!JLiv ~..“- 1” = ~“‘, and we obtain 

Thus, we can make the correspondence: 

and so the Standard Map theory is directly applicable to leapfrog motion ia, a 
sinusoidal potential. 
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FIG. 8. These 
x=0 nor v=O). 

Standard Map orbits with K= 1.0 are symmetric about neither 0 = 0 nor I= 0 (i.e., 

The usual Standard Map orbits (Fig. 8) are symmetric about neither 6’ = 0 nor 
I= 0 (i.e., x = 0 nor r = 0). The figure was made by plotting 10,000 points for orbits 
with initial .Y=O, u =0.3142, 0.9425, 1.5708, 2.1991, 2.8274, 3.4558, 4.0841, 4.7124, 
5.3407, 5.9690; the parameters A and A were unity. By replacing the usual leapfrog 
mover with our variant (Eq. (2)) that defines L’ at integral time levels, we have 
synthesized a “Symmetrized Standard Map” (Fig. 9) which possesses both of these 
symmetries and may prove useful in other contexts. In our experience with small-A 
analyses of various movers we have found that simpler power-series expansions 
result from symmetrized schemes. 

FIG. 9. These “symmetrized Standard Map” orbits exhibit symmetry about B = 0 and Z= 0. FIG. 9. These “symmetrized Standard Map” orbits exhibit symmetry about B = 0 and Z= 0. 
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III, TIME-CENTERED IMPLICIT MOVER 

We have also examined other particle moving algorithms: the second mover we 
consider is an implicit, time-centered mover which is stable for all 4: 

In a harmonic well with natural frequency oO? the dispersion relation is: 
tan toA/2 = fw,Aj2. In the double-well potential u = 1, this mover exhibits 
behavior similar to that of the leapfrog. An example appears in Fig. 10: here 2000 
steps were plotted using A =0.25 and initial ~7 =O. .?c= 1; 1.4. 1.8, 2.4, 2.5, 2.75: 2.8. 
2.9, 4, 7. 

In the ‘“stiff spring” potential 4 = .Y’ the implicit mover yields stochasricity for 
large enough energy and 4. The behavior for A = 0.6 is shown in Fig. 11; lG;OOO 
steps were taken with initial L’= 0, x= 1.5, 1.7. 2, 2.2, 2.5, 3.5, 4, 4.5, 5; in a 
one orbit used x = 0, LJ = 20. The same orbits for A = 4 appear in Fig. 12; these 
orbits clearly incorporate islands, yet when viewed on a coarse scale bear a 
qualitative resemblance to the true orbits of the 4 = 0 limit. It is inconvenient to 
run an explicit mover in such a potential; since there is no bound on the frequency 
(it rises indefinitely with amplitude), leapfrog instability tends to set in An implicit 
mover does not share this difficulty. 

FIG. 10. Phase plane of 10 orbits in the potential r = 1, J = 0.23. using the implicit move:. In 
contrast with the earlier plots, only 1000 steps per orbit are shoan. 
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X 

FIG. 11. Phase plane of the implicit mover in the potential q5 =.Y’, using A =0.6. Large islands are 
readily visible. 

The implicit mover is not (locally) an area-preserving map. The Jacobian of the 
mapping from (x”. 0”) to (A?+ r, tY+‘) is: 

J= 1 - (d2/4)F’(X’7 
1 - (d2/4)F’(s”+‘) 

4 3# 
?I-- 4 qY’(.x”) for small 4. (12) 

Note that 4”’ is just a function of X, while O(X) is equally often positive and 
negative. Equivalently, note that (in the exact expression) interchanging X” and 
x ‘+ r amounts to changing J into l/J, as it must for any “reversible” scheme which 

7 

FIG. 12. Phase plane of the implicit mover in the potential d = x4, using d = 4. 
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retraces its steps if the sign of d is reversed. Any change in phase space area dz 
to motion in one direction is approximately made up for when the particie moves 
in the other direction. Thus, we can expect little net change in phase space area 
after integration over a complete orbit. For this scheme, the fact that 9 f i has x 
global consequences. 

IV. PREDICTOR-CORRECTOR MOVER 

Our third mover is a second-order predictor-corrector algorithm: 

This mover yields orbits that do not lie on closed curves even for small rimesi.ep. 
An example of this behavior appears in Fig. 1 3: 1000 points of orbits starting er 
L’ = 0, x = 1, 2, 3, 4, 5. 6, 7, with M = 1, A = 0.075. The map is not area-preserving. 
and the mover does poorly because the Jacobian of the transformation is always 
greater than uniry: 

-lot,,’ I’,, I,,,,‘,, ,‘I,(,“,,II,“‘l,,,,~ -8 -4 0 4 a 

x 

FIG. 13. Phase piane of the predictor-corrector mw;er, using r= 1, A =3.075, Ever. ait- ::!ts 
relatively small rimestep size, the lack of energy conservation is evident. 
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This cannot integrate to zero around an orbit, and so the phase-space area of a 
given set of initial conditions will grow continuously. Since only (4”)’ enters, the 
orbit will diverge even in a purely harmonic well, with a dispersion relation: 
o = o,, + (d’w;/6)[1+ i do,]. 

V. ENERGY CONSERVING MOVER 

The fourth difference scheme [S] we consider conserves energy identically; it is 
derived from a Hamiltonian formalism. For any Hamiltonian H(p, q), Hamilton’s 
equations of motion are 

4 = S H/dp; 

@ = -dH/dq. 
(15) 

Let a subscript * denote the advanced time level; an energy-conserving difference 
scheme is then 

q*-q 1 H(q,, PII-ff(q,v p)+Hk p*)--H(q, P) -=- 
A 2 i P*--P I 

. 

P*-P y 

P* -P 1 -= -- 
A 2 

H(q,> p*)-H(q, P*)+fh PI-ff(q, p) 
(16) 

4*-q 

If we multiply the former equation by (p, -p) and the latter by (q* -q), and then 
subtract the two, we find that energy is conserved: 

O=H(q,,p,)--W(qv P). (17) 

Using such a scheme, the points of a numerically computed orbit will fall on the 
exact phase plane curves (for a one-dimensional Hamiltonian). In a one-dimen- 
sional well, the Hamiltonian is H = v2/2 + d(x) and the difference scheme becomes 

x II + 1 - x” “n t1 
+ Lln 

= 

A 2 ; (184 

_ do n+ 1) - ($qx’y 

I! n + 1 _ L,12 Xn+l - x” ’ 
Xn+l #X”, 

zz 

A (18b) 
- (p’(x’z)) x II + 1 

= xn. 

Using the energy conservation, the latter equation can be replaced by 

(u”+‘)2/2-(u”)2/2=q5(x~)-(7qx’z+1). (19) 
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For most potentials either form must be solved iteratively: for th.e harmonic 
oscillator potential &x) = x2/12, the scheme reduces to the centered-implicit one 
described above. The orbits are exactly the circles .? + L’? = 2H, but there are 
phase errors which grow, in a single step, by an amount 1: -A’:!12. The Jacobian 
of the mapping is J=(l-A’Q/2)/(1+A2Q*!2). where Q=(cJ~‘-D),‘(.Y,-.~p-), 
Q* E (f& - D)/(x* - xj, and D= (d,-4)/(+x* -x). As was the case for the cen- 
tered-implicit scheme above, interchanging s and x* changes J into l:J; the scheme 
is reversible and thus area preserving on the average. 

Unfortunately, the energy conserving scheme admits doubie roots when applied 
to motion in a double-well potential. These correspond to ‘-tunneling” through. the 
central bump, or to “false reflection” off a steep low peak. To see this, consider a 
symmetrical double well, with 4(-x) = d(x) and seek an initial condition (x0? c,,j 
with .yO < 0 which admits the two solutions: 

(a) x*R= -s,; z!*R = u0 (the “passing” root). and 

(bj x*L = x0; ceL = - r0 (the “reflecting” root). 

For root (a), Eq. (18a) gives the condition: x,, = --c,d,‘2. For root (b), we take the 
limit of the right member of Eq. (18b) as x.+.. approaches I,,, to obtain the condi- 
tion: 2v, =b’A. Since both solutions exist, both conditions must hold, and we 
conclude G: = -x,&(x,). Since the energy E = t1;/2 $4(~,)~ the range of energies 
over which a symmetrical double root exists for some A is the range of values of 
4 - x,$‘(x, );2. Furthermore, s0 lies on the central bump, and the step size yielding 
the double root is A = -~x~/L~~ = 2 J --s,/~‘(,Y~). In general it is harder to satisfy 
this condition as A is decreased. More precisely, we write 4so.:A’ = -$‘, and plot 
both sides of this equation as functions of x,,. From this we see that a double root 
exists if 4/A’ < -d”(O). From the continuity of roots as functions of the parameters, 
we conclude that multiple roots can exist over a finite range of X, L’, A. In such cases 
one would need to know the height and location of the central 
requires “‘nonlocai” information, it may limit the applicability of the algorithm. 

VI. DBCUSSION 

The algorithms presented here are “single-step” in nature; they advance the 
velocity using a constant acceleration over the duration of a step. Thus, the error 
in position due to a single step scales with ciA3. Use of a small enough timestep can 
rapily reduce this local error, and hence also the global error after many steps. 
IIowever, it is not always practical to employ extremely small timesteps, due to 
reasons of computational expense. Furthermore, roundoff errors guarantee that the 
global error will decrease with timestep size until a minimum is reached at some 

finite A, and will increase thereafter. The global error characteristics of the 
particular difference scheme employed thus take or 1 considerable significance. 
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The question, “Why are there ever closed curves‘!, ” is addressed in some detail in 
our companion paper [l]. In that paper it is shown that a conserved quantity 
exists (for small enough d) and constrains the points of a numerically computed 
orbit to lie on a smooth curve. The dicussion in that paper does not consider 
roundoff effects; when roundoff is present, even the finest curves will have a finite 
width and will in general have gaps because the set of points visited closes upon 
itself before the line is completely filled in. Since most modern computers employ 
rounded (rather than truncated) floating point arithmetic, the errors introduced by 
finite word length have little if any systematic bias. Thus, one expects a slow 
diffusion away from the correct numerical trajectory. Before this diffusion can 
displace an orbit very far, the orbit typically joins on itself when a bit pattern which 
is identical to an earlier one is visited; from then on the orbit must repeat itself 
endlessly. 

In numerical experiments that we have carried out, the above-mentioned revisita- 
tion occurs fairly rapidly; there are not very many points in the vicinity of a line 
line that are representable with the available bits. Another effect which helps 
preserve the “thinness” of a curve is fairly subtle. A computer with a finite number 
of bits contains “attractors” in its arithmetic. For example, if three binary digits are 
retained in the mantissa, the sum of f ( = 0.001,) and 1 is 1, since the correct result 
(1.001,) cannot be represented with three bits. The sum of $ and i is also 1 in such 
a machine; two different numbers added to $ give the same answer. Thus we expect 
situations where two different initial states lead to the same final state to occur in 
the course of moving particles. Such a state of affairs makes “revisitation” more 
likely. 

We emphasize that all of the studies reported in this paper concern one-dimen- 
sional systems, in which the interplay between numerically induced stochasticity 
and physical chaos cannot be studied. Nonetheless, one-dimensional motions are in 
general an allowed subclass of motions in higher dimensional systems. We see no 
reason to expect higher dimensionality to inhibit numerically induced stochasticity; 
it is, however, likely to be harder to recognize, since physically induced stochasticity 
cannot be ruled out in such systems. At the least, numerical effects can be expected 
to enlarge the size of physically stochastic regions. At the worst, there are more 
natural periods of oscillation with which the timestep size might be resonant. The 
extra degrees of freedom may in some cases act as if a parameter in a numerically- 
stochastic 1D system was being varied, so that orbits may move in and out of 
stochastic regions; in such cases the numerically induced stochasticity might be 
expected to be more prevalent but less severe. 

Other researchers have advocated the use of both energy conserving [5] and 
symplectic [6] (in lD, area-preserving) schemes. However, at least in 1D these 
desirable attributes seem to be incompatible, since the only scheme which satisfies 
both critera yields a series of points along the true orbit, within a uniform (same 
for all orbits) resealing of the time parameter. Thus, it seems one would need to 
know the solution in order to devise such a scheme. The energy conserving scheme 
in 1D has the advantage of making only phase errors and is at least area preserving 
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on the average. so it has real merit for at least a restricted class of problems, The 
two properties are not incompatible in higher dimensional systems, since surfaces 
of constant energy do not specify paths in phase space uniquely. It may be possible 
to devise a difference scheme which is both symplectic and energy conserving; we 
do not know of such a scheme. 

It is still an open question which peoperty is the more usefuul in higher dimen- 
sions. We do know, however, that the symplectic property remains important in 
higher dimensional systems, since it guarantees the preservation of phase-space 
volumes and Liouville’s theorem (in cases where the latter should be satisfied ). Ox 
attractive choice in higher dimensions is to use a symplectic advance, then to check 
the accuracy by monitoring energy conservation. It can be extreme’ly useful to have 
such a measure, since alternatives are likely to require redundant calculaticns VA% 
different step sizes. a procedure which may be expensive if carried out for everv 
run. 

The phenomenon of numerically induced stochasticity has significance in several 
contexts. First, a numerical investigation of the regions of phase space accessible is 
an orbit may iead to erroneous results, if the timestep is too iarge or the mwer 
inappropriate. Furthermore, conclusions about orbital stabiiity based on aum.erica! 
integrations may be erroneous, since neighboring chaotic orbits diverge exponen- 
tially, even if the chaos is numerically induced. When studying the dynamics of E 
physical system, one should demonstrate that any a03 observed is not nmmi- 

tally induced. 41~0, linearized simulations of collectiv:: phenomena must a;-~~id 
numerically induced stochasticity, since the zero-order and perturbed trajectories 
are ‘“neighboring.” Finally, trajectory crossings in PIG simulations can lead to 
enhanced noise and other errors [7]. 

A few “rules of thumb” can help one avoid the most extreme effects of numeri- 
cally induced stochasticity. If every spatial structure in the potential is weii resolved 
in time along an orbit. spurious stochasticity should be a focalized phenomenon: 
the area encompassed by a stochastic sea may be enlarged, but the qualitative 
behavior should generally be correct over most of phase space. Guidance can also 
be obtained by making analogy with the standard map and the conditions under 
which srochasticity obtains therein; resonance overlap criteria may be useful. 

Nonetheless, it remains prudent to vary numerical parameters and ascertain tha’l 
he resuits of the calculation remain essentially unchanged; the size of the stochastic 
regions is one measure that is useful in this regard. Specifically the timestep size. but 
possibly other details of the calculation [such as the numeric& algorithm 
employed), should be varied. Taking guidance from the companion paper, several 
step sizes that do not differ from each other by small integer factors should be tr’icti. 
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